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Abstract: The discovery and study of exoplanets have made tremendous strides, particularly with the aid of 

Artificial Intelligence (AI). The surge in data from space missions like Kepler, TESS, and the upcoming James 

Webb Space Telescope has necessitated the development of automated tools for efficient data processing. Machine 

learning (ML) and deep learning (DL) algorithms have significantly improved exoplanet detection, identifying 

planetary signals and refining the analysis of light curves, radial velocities, and other astronomical data. This 

review traces the evolution of exoplanet detection techniques, from traditional methods to AI-driven approaches, 

and explores the future of exoplanet exploration using AI. 
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1. Introduction 

Exoplanet discovery, particularly in the past two decades, has rapidly evolved from theoretical 

predictions to a thriving scientific endeavor. The first confirmed exoplanet was discovered in 1995 using radial 

velocity techniques, marking the beginning of a new era in astronomical research (Mayor & Queloz, 1995). Since 

then, thousands of exoplanets have been detected through various techniques such as transit photometry, radial 

velocity, direct imaging, and gravitational microlensing. The success of missions like NASA’s Kepler Space 

Telescope, which provided the first comprehensive survey of exoplanets, and more recently, the Transiting 

Exoplanet Survey Satellite (TESS), has significantly expanded the list of known exoplanets, many of which could 

host conditions suitable for life. 

Despite these successes, traditional methods often face limitations, especially in handling the enormous 

volume of data produced by modern telescopes. For example, Kepler alone observed more than 150,000 stars, and 

TESS is expected to monitor millions. The sheer scale of the data generated requires automated, efficient methods 

for analysis to identify potential exoplanet candidates among the noise created by stellar activity and other 

astrophysical phenomena. 

Artificial Intelligence (AI), particularly machine learning (ML) and deep learning (DL), has emerged as 

a powerful tool to address these challenges. These techniques enable automated classification and analysis of large 

datasets, allowing for the efficient identification of exoplanets and the reduction of human error. ML algorithms, 

such as neural networks, random forests, and support vector machines, have been applied to light curve analysis 

from the Kepler and TESS missions, significantly improving the speed and accuracy of exoplanet detection 

(Angus et al., 2018). Deep learning models, particularly convolutional neural networks (CNNs), have also played 

an important role in detecting subtle signals by distinguishing planetary transits from noise, enabling the 

identification of previously overlooked planets (Tong et al., 2023). 

This review explores the evolution of exoplanet detection methods, emphasizing the role of AI in 

enhancing traditional techniques and enabling new methodologies. From data analysis to real-time predictions 

and automated detection, AI is transforming how we detect and characterize exoplanets, facilitating discoveries 

that were once beyond reach. 

2. Early Exoplanet Detection Techniques 

2.1 Radial Velocity (Doppler Spectroscopy) 

Radial velocity, which detects the wobble of stars caused by the gravitational pull of orbiting planets, has 

been a cornerstone of exoplanet discovery. This method was used to discover the first confirmed exoplanet, 51 

Pegasi b, in 1995 (Mayor & Queloz, 1995). However, it is most effective for detecting massive exoplanets in close 

orbits and struggles with smaller or more distant planets. 
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2.2 Transit Photometry 

The transit method measures the dimming of a star's light as a planet passes in front of it. This method 

has led to the discovery of thousands of exoplanets, especially with the Kepler Space Telescope (Borucki et al., 

2010). However, it is biased toward planets whose orbits are aligned in such a way that they transit their stars as 

seen from Earth. 

2.3 Direct Imaging 

Direct imaging involves blocking out the light from a star to capture the faint light from orbiting planets. 

While challenging due to the brightness contrast between a star and its planets, this method has been successful 

in detecting large, distant planets (Kalas et al., 2008). 

3. The Role of AI in Exoplanet Detection 

As the volume of exoplanet data from space missions grew exponentially, traditional techniques 

struggled to keep pace. Artificial Intelligence (AI), especially machine learning (ML), has provided a solution by 

enabling more efficient analysis of large datasets, reducing human error, and uncovering subtle planetary signals 

that might otherwise be missed. 

3.1 Data Processing and Analysis 

The Kepler and TESS missions have produced vast amounts of light curve data, much of it requiring 

manual or semi-automated analysis. AI techniques, particularly machine learning, have greatly enhanced the speed 

and accuracy of light curve classification. Neural networks, random forests, and support vector machines are 

among the ML models used to automate the detection of exoplanets from these light curves (Angus et al., 2018). 

AI algorithms have been able to identify planetary transits in these datasets with high efficiency, making it possible 

to process millions of light curves (Schmitt et al., 2016). 

Table 1: Comparison of Machine Learning Models for Light Curve Classification 

Machine Learning 

Model 

Key Features Application in Exoplanet 

Detection 

Example Usage 

Neural Networks 

(NN) 

Deep learning model with 

layered architecture 

Identifying exoplanet transits 

in light curves 

Kepler data (Angus 

et al., 2018) 

Random Forests 

(RF) 

Ensemble learning method 

using multiple decision trees 

Classifying planetary 

candidates from light curves 

TESS data (Tong et 

al., 2023) 

Support Vector 

Machines (SVM) 

Linear classifier with robust 

decision boundaries 

Detecting small exoplanets and 

filtering false positives 

Kepler data 

(Hinners et al., 

2018) 

 

3.2 Signal Detection and Noise Reduction 

One of the most challenging aspects of exoplanet detection is distinguishing true planetary signals from 

noise caused by stellar activity, instrumental errors, or other astrophysical phenomena. AI has significantly 

improved the ability to differentiate between these sources. Convolutional neural networks (CNNs) and other deep 

learning techniques have been used to identify planetary transits while filtering out noise such as stellar flares or 

eclipsing binaries (Tong et al., 2023). These advancements have made it possible to detect fainter signals that 

would have been difficult or impossible to identify with traditional methods (Hinners et al., 2018). 

 

 

____________________________________________________________________________________________________

International Journal of Current Research and Techniques (IJCRT)
E-ISSN: 2349-3194 (Online) | P-ISSN: 2348-4446 (Print)

UGC Approved Journal No: 47722 [No: 2616]
DOI: https://doi.org/10.61359/2024050046

IJCRT, Volume 15, Issue 1, 2025

____________________________________________________________________________________________________

WWW.IJCRT.ORG.IN 50377 



3.3 Automated Planet Detection 

AI has proven invaluable in automating the entire process of exoplanet detection. The ExoMiner project, 

developed by NASA, is one such example, where deep learning models trained on previously confirmed exoplanet 

candidates are used to identify new exoplanets from Kepler data. These models have demonstrated a high accuracy 

rate in classifying potential exoplanets, minimizing false positives and false negatives (Valizadegan et al., 2022). 

Such AI systems are revolutionizing the scale at which exoplanets can be discovered, making it possible to process 

and identify candidates across massive datasets. 

3.4 Model Fitting and Bayesian Inference 

Machine learning techniques, such as Bayesian inference, have also been employed to refine models of 

exoplanetary systems. These models help astronomers make inferences about the physical parameters of planets, 

such as their size, mass, and orbital characteristics, even when some data is missing or noisy. AI-based Bayesian 

methods allow for the calculation of probabilities in complex models, improving the accuracy of exoplanet 

characterization (Schanche et al., 2019). 

4. Recent Developments and AI Innovations 

Recent advancements in AI have enabled even more sophisticated methods for exoplanet detection, 

significantly improving both accuracy and scalability. 

4.1 Deep Learning for Light Curve Analysis 

Deep learning algorithms, especially deep neural networks (DNNs), have taken the spotlight in recent 

years, especially for detecting exoplanet transits from light curves. These algorithms can learn from vast amounts 

of data and recognize patterns that are too subtle for traditional methods. The application of deep learning 

techniques has enabled the identification of thousands of exoplanet candidates, many of which were previously 

undetectable (Schmitt et al., 2016). 

4.2 Artificial Intelligence in Future Exoplanet Missions 

The recent James Webb Space Telescope (JWST) and future exoplanet missions are expected to generate 

vast amounts of data that AI will help process. Machine learning will be essential in identifying new exoplanet 

candidates in real-time, analyzing the atmospheric composition of exoplanets, and even studying exoplanetary 

climates. The integration of AI into these missions will help astronomers explore planets in greater detail and 

assess their potential habitability (Pepe et al., 2011). 

5. Conclusion 

The application of AI to exoplanet detection represents one of the most significant advancements in 

astronomy in recent years. By automating data analysis and improving the accuracy of exoplanet classification, 

machine learning and deep learning algorithms have expanded the possibilities for discovering new exoplanets. 

As data from new space missions like JWST become available, AI will continue to play a pivotal role in analyzing 

vast datasets, allowing astronomers to refine our understanding of exoplanetary systems. Looking ahead, AI 

promises to revolutionize our ability to detect and characterize exoplanets, paving the way for deeper explorations 

of planets that may harbor life. With each new breakthrough, the potential for discovering Earth-like planets 

grows, bringing us closer to answering one of humanity’s most profound questions: Are we alone in the universe? 
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